Copied to
clipboard

?

G = C4225D14order 448 = 26·7

25th semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4225D14, C14.1422+ (1+4), C4⋊C417D14, C4⋊D285C2, (C4×C28)⋊2C22, C281D438C2, C422C28D7, C422D71C2, C22⋊D2828C2, D14⋊D446C2, D14⋊C424C22, (C2×D28)⋊10C22, Dic7⋊C45C22, C22⋊C4.41D14, D14.5D444C2, (C2×C14).255C24, (C2×C28).195C23, C2.67(D48D14), C23.61(C22×D7), C74(C22.54C24), (C22×C14).69C23, (C23×D7).70C22, C22.276(C23×D7), (C2×Dic7).131C23, (C22×D7).114C23, (C2×C4×D7)⋊28C22, (C7×C4⋊C4)⋊34C22, (C7×C422C2)⋊10C2, (C2×C4).211(C22×D7), (C2×C7⋊D4).75C22, (C7×C22⋊C4).80C22, SmallGroup(448,1164)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4225D14
C1C7C14C2×C14C22×D7C23×D7C22⋊D28 — C4225D14
C7C2×C14 — C4225D14

Subgroups: 1644 in 252 conjugacy classes, 91 normal (16 characteristic)
C1, C2 [×3], C2 [×6], C4 [×9], C22, C22 [×22], C7, C2×C4 [×6], C2×C4 [×6], D4 [×12], C23, C23 [×8], D7 [×5], C14 [×3], C14, C42, C22⋊C4 [×3], C22⋊C4 [×9], C4⋊C4 [×3], C4⋊C4 [×3], C22×C4 [×3], C2×D4 [×12], C24, Dic7 [×3], C28 [×6], D14 [×19], C2×C14, C2×C14 [×3], C22≀C2 [×3], C4⋊D4 [×6], C22.D4 [×3], C422C2, C422C2, C41D4, C4×D7 [×3], D28 [×9], C2×Dic7 [×3], C7⋊D4 [×3], C2×C28 [×6], C22×D7 [×2], C22×D7 [×3], C22×D7 [×3], C22×C14, C22.54C24, Dic7⋊C4 [×3], D14⋊C4 [×9], C4×C28, C7×C22⋊C4 [×3], C7×C4⋊C4 [×3], C2×C4×D7 [×3], C2×D28 [×9], C2×C7⋊D4 [×3], C23×D7, C4⋊D28, C422D7, C22⋊D28 [×3], D14⋊D4 [×3], D14.5D4 [×3], C281D4 [×3], C7×C422C2, C4225D14

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D7, C24, D14 [×7], 2+ (1+4) [×3], C22×D7 [×7], C22.54C24, C23×D7, D48D14 [×3], C4225D14

Generators and relations
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=a-1b2, dad=ab2, cbc-1=a2b, dbd=a2b-1, dcd=c-1 >

Smallest permutation representation
On 112 points
Generators in S112
(1 66 9 110)(2 60 10 104)(3 68 11 112)(4 62 12 106)(5 70 13 100)(6 64 14 108)(7 58 8 102)(15 63 23 107)(16 57 24 101)(17 65 25 109)(18 59 26 103)(19 67 27 111)(20 61 28 105)(21 69 22 99)(29 83 94 76)(30 55 95 48)(31 71 96 78)(32 43 97 50)(33 73 98 80)(34 45 85 52)(35 75 86 82)(36 47 87 54)(37 77 88 84)(38 49 89 56)(39 79 90 72)(40 51 91 44)(41 81 92 74)(42 53 93 46)
(1 50 26 72)(2 44 27 80)(3 52 28 74)(4 46 22 82)(5 54 23 76)(6 48 24 84)(7 56 25 78)(8 49 17 71)(9 43 18 79)(10 51 19 73)(11 45 20 81)(12 53 21 75)(13 47 15 83)(14 55 16 77)(29 70 36 107)(30 101 37 64)(31 58 38 109)(32 103 39 66)(33 60 40 111)(34 105 41 68)(35 62 42 99)(57 88 108 95)(59 90 110 97)(61 92 112 85)(63 94 100 87)(65 96 102 89)(67 98 104 91)(69 86 106 93)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 28)(2 27)(3 26)(4 25)(5 24)(6 23)(7 22)(8 21)(9 20)(10 19)(11 18)(12 17)(13 16)(14 15)(29 95)(30 94)(31 93)(32 92)(33 91)(34 90)(35 89)(36 88)(37 87)(38 86)(39 85)(40 98)(41 97)(42 96)(43 52)(44 51)(45 50)(46 49)(47 48)(53 56)(54 55)(57 63)(58 62)(59 61)(64 70)(65 69)(66 68)(71 82)(72 81)(73 80)(74 79)(75 78)(76 77)(83 84)(99 109)(100 108)(101 107)(102 106)(103 105)(110 112)

G:=sub<Sym(112)| (1,66,9,110)(2,60,10,104)(3,68,11,112)(4,62,12,106)(5,70,13,100)(6,64,14,108)(7,58,8,102)(15,63,23,107)(16,57,24,101)(17,65,25,109)(18,59,26,103)(19,67,27,111)(20,61,28,105)(21,69,22,99)(29,83,94,76)(30,55,95,48)(31,71,96,78)(32,43,97,50)(33,73,98,80)(34,45,85,52)(35,75,86,82)(36,47,87,54)(37,77,88,84)(38,49,89,56)(39,79,90,72)(40,51,91,44)(41,81,92,74)(42,53,93,46), (1,50,26,72)(2,44,27,80)(3,52,28,74)(4,46,22,82)(5,54,23,76)(6,48,24,84)(7,56,25,78)(8,49,17,71)(9,43,18,79)(10,51,19,73)(11,45,20,81)(12,53,21,75)(13,47,15,83)(14,55,16,77)(29,70,36,107)(30,101,37,64)(31,58,38,109)(32,103,39,66)(33,60,40,111)(34,105,41,68)(35,62,42,99)(57,88,108,95)(59,90,110,97)(61,92,112,85)(63,94,100,87)(65,96,102,89)(67,98,104,91)(69,86,106,93), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,28)(2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17)(13,16)(14,15)(29,95)(30,94)(31,93)(32,92)(33,91)(34,90)(35,89)(36,88)(37,87)(38,86)(39,85)(40,98)(41,97)(42,96)(43,52)(44,51)(45,50)(46,49)(47,48)(53,56)(54,55)(57,63)(58,62)(59,61)(64,70)(65,69)(66,68)(71,82)(72,81)(73,80)(74,79)(75,78)(76,77)(83,84)(99,109)(100,108)(101,107)(102,106)(103,105)(110,112)>;

G:=Group( (1,66,9,110)(2,60,10,104)(3,68,11,112)(4,62,12,106)(5,70,13,100)(6,64,14,108)(7,58,8,102)(15,63,23,107)(16,57,24,101)(17,65,25,109)(18,59,26,103)(19,67,27,111)(20,61,28,105)(21,69,22,99)(29,83,94,76)(30,55,95,48)(31,71,96,78)(32,43,97,50)(33,73,98,80)(34,45,85,52)(35,75,86,82)(36,47,87,54)(37,77,88,84)(38,49,89,56)(39,79,90,72)(40,51,91,44)(41,81,92,74)(42,53,93,46), (1,50,26,72)(2,44,27,80)(3,52,28,74)(4,46,22,82)(5,54,23,76)(6,48,24,84)(7,56,25,78)(8,49,17,71)(9,43,18,79)(10,51,19,73)(11,45,20,81)(12,53,21,75)(13,47,15,83)(14,55,16,77)(29,70,36,107)(30,101,37,64)(31,58,38,109)(32,103,39,66)(33,60,40,111)(34,105,41,68)(35,62,42,99)(57,88,108,95)(59,90,110,97)(61,92,112,85)(63,94,100,87)(65,96,102,89)(67,98,104,91)(69,86,106,93), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,28)(2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17)(13,16)(14,15)(29,95)(30,94)(31,93)(32,92)(33,91)(34,90)(35,89)(36,88)(37,87)(38,86)(39,85)(40,98)(41,97)(42,96)(43,52)(44,51)(45,50)(46,49)(47,48)(53,56)(54,55)(57,63)(58,62)(59,61)(64,70)(65,69)(66,68)(71,82)(72,81)(73,80)(74,79)(75,78)(76,77)(83,84)(99,109)(100,108)(101,107)(102,106)(103,105)(110,112) );

G=PermutationGroup([(1,66,9,110),(2,60,10,104),(3,68,11,112),(4,62,12,106),(5,70,13,100),(6,64,14,108),(7,58,8,102),(15,63,23,107),(16,57,24,101),(17,65,25,109),(18,59,26,103),(19,67,27,111),(20,61,28,105),(21,69,22,99),(29,83,94,76),(30,55,95,48),(31,71,96,78),(32,43,97,50),(33,73,98,80),(34,45,85,52),(35,75,86,82),(36,47,87,54),(37,77,88,84),(38,49,89,56),(39,79,90,72),(40,51,91,44),(41,81,92,74),(42,53,93,46)], [(1,50,26,72),(2,44,27,80),(3,52,28,74),(4,46,22,82),(5,54,23,76),(6,48,24,84),(7,56,25,78),(8,49,17,71),(9,43,18,79),(10,51,19,73),(11,45,20,81),(12,53,21,75),(13,47,15,83),(14,55,16,77),(29,70,36,107),(30,101,37,64),(31,58,38,109),(32,103,39,66),(33,60,40,111),(34,105,41,68),(35,62,42,99),(57,88,108,95),(59,90,110,97),(61,92,112,85),(63,94,100,87),(65,96,102,89),(67,98,104,91),(69,86,106,93)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,28),(2,27),(3,26),(4,25),(5,24),(6,23),(7,22),(8,21),(9,20),(10,19),(11,18),(12,17),(13,16),(14,15),(29,95),(30,94),(31,93),(32,92),(33,91),(34,90),(35,89),(36,88),(37,87),(38,86),(39,85),(40,98),(41,97),(42,96),(43,52),(44,51),(45,50),(46,49),(47,48),(53,56),(54,55),(57,63),(58,62),(59,61),(64,70),(65,69),(66,68),(71,82),(72,81),(73,80),(74,79),(75,78),(76,77),(83,84),(99,109),(100,108),(101,107),(102,106),(103,105),(110,112)])

Matrix representation G ⊆ GL8(𝔽29)

82413100000
13213160000
002150000
001680000
00002751616
0000282319
0000418824
00007111321
,
102700000
010270000
002800000
000280000
000022400
000012700
000000824
0000001321
,
725000000
220000000
7252240000
220700000
000082500
0000242800
00002410224
0000211570
,
10000000
928000000
102800000
9282010000
0000261100
000023300
00000010
000000928

G:=sub<GL(8,GF(29))| [8,13,0,0,0,0,0,0,24,21,0,0,0,0,0,0,13,3,21,16,0,0,0,0,10,16,5,8,0,0,0,0,0,0,0,0,27,28,4,7,0,0,0,0,5,2,18,11,0,0,0,0,16,3,8,13,0,0,0,0,16,19,24,21],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,27,0,28,0,0,0,0,0,0,27,0,28,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,24,27,0,0,0,0,0,0,0,0,8,13,0,0,0,0,0,0,24,21],[7,22,7,22,0,0,0,0,25,0,25,0,0,0,0,0,0,0,22,7,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,8,24,24,21,0,0,0,0,25,28,10,15,0,0,0,0,0,0,22,7,0,0,0,0,0,0,4,0],[1,9,1,9,0,0,0,0,0,28,0,28,0,0,0,0,0,0,28,20,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,26,23,0,0,0,0,0,0,11,3,0,0,0,0,0,0,0,0,1,9,0,0,0,0,0,0,0,28] >;

61 conjugacy classes

class 1 2A2B2C2D2E···2I4A···4F4G4H4I7A7B7C14A···14I14J14K14L28A···28R28S···28AA
order122222···24···444477714···1414141428···2828···28
size1111428···284···42828282222···28884···48···8

61 irreducible representations

dim11111111222244
type++++++++++++++
imageC1C2C2C2C2C2C2C2D7D14D14D142+ (1+4)D48D14
kernelC4225D14C4⋊D28C422D7C22⋊D28D14⋊D4D14.5D4C281D4C7×C422C2C422C2C42C22⋊C4C4⋊C4C14C2
# reps111333313399318

In GAP, Magma, Sage, TeX

C_4^2\rtimes_{25}D_{14}
% in TeX

G:=Group("C4^2:25D14");
// GroupNames label

G:=SmallGroup(448,1164);
// by ID

G=gap.SmallGroup(448,1164);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,758,219,184,1571,570,192,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d=a*b^2,c*b*c^-1=a^2*b,d*b*d=a^2*b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽